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Abstract The head-on collision of two equal-sized drops in a hyperbolic flow is investigated numerically.
An axisymmetric volume-of-fluid (VOF) method is used to simulate the motion of each drop toward
a symmetry plane where it interacts and possibly coalesces with its mirror image. The volume-fraction
boundary condition on the symmetry plane is manipulated to numerically control coalescence. Two new
numerical methods have been developed to incorporate the van der Waals forces in the Navier–Stokes
equations. One method employs a body force computed as the negative gradient of the van der Waals
potential. The second method employs the van der Waals forces in terms of a disjoining pressure in the
film depending on the film thickness. Results are compared to theory of thin-film rupture. Comparisons of
the results obtained by the two methods at various values of the Hamaker constant show that the van der
Waals forces calculated from the two methods have qualitatively similar effects on coalescence. A study
of the influence of the van der Waals forces on the evolution and rupture of the film separating the drops
reveals that the film thins faster under stronger van der Waals forces. Strong van der Waals forces lead to
nose rupture, and small van der Waals forces lead to rim rupture. Increasing the Reynolds number causes
a greater drop deformation and faster film drainage. Increasing the viscosity ratio slows film drainage,
although the effect is small for small viscosity ratio.

Keywords Drop collision · Coalescence · Van der Waals force · Volume of fluid

1 Introduction

Drop collision is encountered in a wide range of processes. Rain-drop formation is one example from
nature. Numerous applications involving drop collisions can also be found in industry. In polymer blend-
ing, coalescence and break-up of liquid particles govern the development of the blend’s morphology
which determines the physical properties of the blend. In spray combustion, frequent collisions of drops
in the dense spray region near the injector can significantly affect drop size and velocity, and thus the
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ultimate combustion performance. Examples of drop collision also abound in various other fields, such as
liquid–liquid extraction, ink-jet printing, drug delivery, and waste treatment.

Due to its significance, drop collision has been of interest to researchers for decades. However, most
studies have been limited to experiments because of the complex physics and the wide range of length scales
in this process. The literature on experimental investigations of collision problems is extensive. According
to previous studies (1), binary collision outcomes can be generally divided into four regimes: bouncing, in
which two drops collide and bounce apart; coalescence, in which two drops merge permanently forming
a single drop; separation, in which drops coalesce temporarily and then split into two drops again; and
fragmentation, in which small satellite drops are formed during separation of the temporarily coalesced
drops.

Many efforts have been made to understand the characteristics of different collision behaviors, the
boundaries separating them, and the physics behind them. Ashgriz and Poo (2) conducted extensive exper-
iments on coalescence and separation collisions. The regimes of coalescence and two different types of
separation characterized by the impact parameter, namely reflexive separation for small impact param-
eters and stretching separation for large impact parameters, were found in the space of Weber number
and impact parameter. A systematic experimental study of collision dynamics of equal-sized water and
hydrocarbon drops was performed by Jiang et al. (3). Boundaries between different collision outcomes
for five different hydrocarbons were delineated, showing significant differences from those of water drops.
Energy dissipation during the collision process, as well as the effects of the material properties of the fluids
on collision behaviors, were also analyzed. Qian and Law (4) extended Jiang’s study and investigated the
effects of the ambient gas, including gas pressure, viscosity, molecular weight, and molecular structure, on
the transition between different collision regimes. Qian and Law (4) also presented a coalescence/sepa-
ration criterion for head-on collisions. A review of experimental studies of water and fuel-drop collision
dynamics in quiescent air can be found in (1). Motivated by the importance of flow-induced coalescence in
polymer blending and other applications, Leal and co-workers investigated drop collision and coalescence
in linear flows ranging from simple shear flows to pure extensional flows generated by a four-roll mill. This
mimics the range of conditions experienced by drops in real, complex applications. A review of their recent
work was written by Leal (5).

Unlike experiments, numerical simulations have the potential advantage of being able to resolve the
thin film between the drops. However, numerical investigations of binary drop collisions are rare. The study
of Foote (6) emphasized bouncing of equal-sized water drops colliding head-on. The collision process was
modeled using a Marker-and-Cell method as one drop colliding with a non-wetting slip wall. The effect of
the surrounding air on drop motion was neglected. Mashayek et al. (7) employed a spine-flux method and
focused their study on coalescing collisions of two drops colliding head-on under a fixed Weber number of
1. The effects of Reynolds number, internal circulation, and drop-size ratio on coalescence were examined.
Nobari and Jan (8) investigated both bouncing and non-bouncing outcomes of head-on collisions of two
equal-sized drops using a front-tracking method. The velocity and pressure field inside the bouncing drops
were studied in detail. The effects of Reynolds number and Weber number were examined. However,
in their study, coalescence did not occur naturally, but by artificially removing the thin film between the
drops. The time when the film ruptured was found to affect the behavior of the combined drop. A three-
dimensional version of the same method was used to simulate off-center binary collisions by Nobari and
Tryggvason (9). Lafaurie et al. (10) presented sample three-dimensional computations of drop collision to
illustrate their volume-of-fluid (VOF) method. Recently, Premnath and Abraham (11) simulated head-on
and off-center drop collisions leading to coalescence and separation using axisymmetric and three-dimen-
sional versions of the multiple-relaxation-time lattice-Boltzmann model, respectively. The effect of Weber
number, Ohnesorge number, viscosity ratio, impact parameter, and the properties of the ambient fluid
are examined. The full three-dimensional study of Pan and Suga (12) using a level-set method covers all
major collision outcomes, except for fragmentation. The numerically determined regimes of bouncing,
coalescence with major deformation, and separation were consistent with previous theoretical predictions.
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However, they failed to predict the regime of coalescence with minor deformation, because they neglected
intermolecular forces. For drop collisions in Stokes flows, the boundary-integral method is often used.
Zinchenko et al. (13) presented a three-dimensional boundary-integral method to simulate the gravity-
induced interaction of drops. The drops could come arbitrarily close to each other, but could not coalesce
in their method. A simulation of collisions in shear and compressional flows can be found in the work
of Cristini et al. (14). These authors have also conducted a theoretical study of head-on collisions of
surfactant-covered drops (15).

When two equal-sized drops immersed in an immiscible fluid approach each other along the axis con-
necting their centers, a film forms between them and subsequently thins. When the thickness of the film
falls into the range of several hundreds of Angstroms, 100–1000 Å, van der Waals forces become significant,
leading to rupture of the film and consequently coalescence of the drops.

Although the literature in van-der-Waals-driven thin-film rupture is rich, most studies have focused on
rupture of a free film [16, 17], or a thin film on a solid substrate (18). Studies on thinning and rupture
of a thin film between drops, which is usually dimpled, in coalescence collisions are limited. Chen (19)
included van der Waals forces in his model, describing the drainage and rupture of the dimpled thin
film between two equal-sized drops. A number of assumptions were made in this study, including creep-
ing flow and the lubrication approximation. The initial shape of the interface was determined in an
ad hoc way. The evolution of the film shape was presented. Calculations at different strengths of van
der Waals forces showed that the rupture time decreases with increasing strength of the van der Wa-
als forces. Yiantsios and Davis (20) examined the effects of van der Waals forces on the rupture of
the film between two different-sized drops as they approach each other due to gravity at small capil-
lary and Reynolds numbers. The van der Waals forces were applied in the form of a negative disjoining
pressure on the interface as a boundary condition. Lubrication theory was applied in the film. They
found that large van der Waals forces lead to ‘nose rupture’ on the symmetry axis, and small van der
Waals forces lead to off-center ‘rim rupture’. Chesters and co-workers have studied drainage and rup-
ture of the liquid film between drops colliding at constant velocity (21), or under a constant interaction
force (22) with the influence of van der Waals forces. Assumptions similar to those used in (20) were
adopted.

In this study, we present the numerical simulation of the collision of two equal-sized drops driven
by an extensional flow. In industrial applications, such as in mixers and nozzles, droplets may experi-
ence translation, shearing, and extension. Here we focus on extension as one of the key ingredients
of real flows. The effects of van der Waals forces on the coalescence of the drops are examined. The
van der Waals forces are calculated by two different methods. In one method, a body force acting
on the drops and calculated from an interaction potential is introduced into the momentum equa-
tion (23). In the second method a disjoining pressure in the film is used to represent the van der
Waals forces as in [17, 19]. The concept of disjoining pressure which accounts for the pressure differ-
ence between a thin film and the bulk phase from which the film is made was first introduced by
Deryagin (24).

The primary difference between our research and previous work is that the Reynolds and capillary num-
bers need not be small, as in most of the other theoretical and computational studies. The full Navier–Stokes
equations with modifications to represent van der Waals forces that govern the motion of the fluid both
inside the drop and in the surrounding flow are solved. In addition, the whole coalescence process from
the approach of the two drops, to the rupture of the film, to the formation of the single drop is examined.
We start with two drops separated by a certain distance and the film between the drops develops naturally.
Our goal is to develop a numerical model that can accurately simulate the collision of two drops and give
us a better understanding of the dynamics.

Section 2 presents the problem studied, the governing equations, and the numerical methods. The two
methods used to incorporate van der Waals forces are introduced in Sect. 3. Verification is presented in
Sect. 4. Results and discussion are reported in Sect. 5. Section 6 is devoted to conclusions.
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Fig. 1 The physical
problem and the
computational domain (in
gray). Two drops are
propelled by a hyperbolic
flow. The size of the
computational domain is
2.5 × 5 radii
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2 Formulation

Two equal-sized spherical liquid drops are immersed in an axisymmetric extensional gas flow, as shown in
Fig. 1. The drops are centered on the symmetry axis of the flow. Driven by the suspending fluid, the drops
will collide head-on and then may bounce apart or come into contact.

An axisymmetric VOF method is used to simulate the collision of the two drops. The VOF method was
first developed by Nichols et al. (25) and Hirt and Nichols (26). In this method, a volume fraction, F, is
defined in each cell as the fraction of the volume of the cell containing liquid. Thus, F takes the value of
one inside the liquid drops and zero inside the ambient gas. In cells containing both liquid and gas F takes
other values. The interface is reconstructed based on the volume-fraction data. The motion of the interface
is captured through the evolution of the volume fraction.

One set of equations that govern the motion in the whole domain is used. This includes both the drops
and the ambient gas. The effort of applying boundary conditions on the interface is then saved, but the
surface tension must be accounted for correctly. For this purpose, the continuum surface-force (CSF)
method introduced by Brackbill et al. (27) is employed to calculate the surface tension. In this method, the
volume fraction is smeared over a small region near the interface. The surface tension is treated as a volume
force that varies continuously across the interface with nonzero values only in the smeared region near the
interface. As the grid is refined and the thickness of this region goes to zero, the surface tension retrieves
its exact value. For surface-tension coefficient σ , the volume force used to simulate surface tension can be
expressed as σκ∇F, where κ is the interface curvature.

For incompressible, transient, interfacial flows, the axisymmetric dimensionless governing equations are
the continuity equation,
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and the volume-fraction convection equation,

∂F
∂t

+ u
∂F
∂r

+ v
∂F
∂z

= 0, (4)

where u is the velocity in the radial direction, v is the velocity in the vertical direction, ρ is the density,
µ is the viscosity, p is the pressure, Re is the Reynolds number, We is the Weber number, and fvr and fvz
are the radial and vertical components of the van der Waals force fv. Gravity is neglected. The calculation
of van der Waals forces will be introduced in the next section.

The length scale used in non-dimensionlization is the drop radius, R. The velocity scale is the strain rate
of the hyperbolic flow, G, times R. Inertial time and pressure scales are used. These scalings are used in
the rest of the paper except in Sect. 4.2.

The density and viscosity in Eqs. 2 and 3 are linear functions of the volume fraction

ρ = ρ̂ + (1 − ρ̂)F, (5)

µ = µ̂ + (1 − µ̂)F, (6)

where ρ̂ is the density ratio, ρ̂ = ρg/ρd, and µ̂ is the viscosity ratio, µ̂ = µg/µd. The subscripts d and g
denote the drop and the ambient gas, respectively.

The non-dimensional parameters are the Reynolds number, Re = ρdGR2/µd, the Weber number,
We = ρdG2R3/σ , the Hamaker number, A = A/ρdR5G2, where A is the Hamaker constant, the density
ratio, and the viscosity ratio.

The flow field is solved by a projection method [28, 29] on a staggered grid. The resulting pressure
Poisson equation is solved using an incomplete Cholesky conjugate gradient method (30). The interface is
reconstructed from the volume-fraction field at each time step using a piece-wise linear approximation. The
volume fraction is convected by calculating the volume flux across each cell face. Coalescence is assumed
to occur when any of the linear interface segments intersect the symmetry plane. The code, aside from the
van der Waals forces, was thoroughly tested and used to study the breakup of a vibrating drop by James
et al. (31, Chapter 6).

As shown in Fig. 1, the z axis is a symmetry axis and z = 0 is a symmetry plane. To take advantage of
symmetry, the first quadrant comprises the computational domain, shown as the shaded region in Fig. 1.
The size of the computational domain is 2.5 × 5. Initially the two drops are placed on the axis of symmetry
with their centers separated by four radii. The velocity of the flow field is initialized as u = r and v = −2z.
This velocity is then maintained on the top and right boundaries. Symmetry conditions are imposed on the
other boundaries. Boundary conditions for the pressure change between the current and next time step
are derived from the velocity boundary conditions. The derivative of the pressure change normal to each
boundary is zero.

The volume fraction is zero at the top and the right boundaries, and symmetric about the symmetry axis.
Special attention is paid to the volume-fraction boundary condition on the symmetry plane. Since only
one of the drops’ profiles is tracked, the drop in the computational domain interacts with its mirror image
through the volume-fraction boundary condition on the symmetry plane. Therefore the volume-fraction
boundary condition plays a significant role in modeling the collision behavior. Two kinds of the volume-
fraction boundary conditions are used: F = 0 and ∂F/∂z = 0, which lead to different collision outcomes.
The results will be discussed in Sect. 5.2.

The volume-fraction boundary conditions are applied using the ghost cells outside the physical bound-
aries, as shown in Fig. 2. The volume fraction in each ghost cell is set to be zero if the zero boundary
condition is used, and is equal to the volume fraction in the adjacent real cell if the symmetry boundary



104 J Eng Math (2007) 59:99–121

interface

symmetry plane

ghost cells

interface

symmetry plane

ghost cells

(a)

F=0.7F=0.8 F=0.2F=0.4

F=0 F=0 F=0F=0

F=0.7F=0.8 F=0.4

(b)

F=0.2

F=0.8 F=0.7 F=0.4 F=0.2

Fig. 2 Illustration of the volume fraction boundary condition on the symmetry plane. (a) zero condition, (b) symmetry
condition

condition is used. If the volume fraction in the ghost cells is zero, the drop in the computational domain
can not ‘see’ the mirror drop. It can only ‘see’ the boundary as a non-wetting slip wall. However, symme-
try conditions for the velocity and pressure mimic collision. Consequently, the drop can not merge with
the mirror drop and will bounce. In general, in the VOF method, two interfaces will merge automati-
cally whenever they move into adjacent cells. If the symmetry boundary condition is used, this leads to
coalescence of the drops. Unfortunately, the volume-fraction information of the mirror drop will corrupt
the reconstruction of the simulated drop as well as the computation of curvature and in turn the surface
tension. In our simulations, the symmetry and zero conditions enable us to simulate not only coalescence,
but also bouncing. However, resolution of the two separate, but nearby, interfaces in the coalescing case is
somewhat problematic. Future work will address this issue.

3 Calculation of van der Waals forces

We have developed two different methods to calculate van der Waals forces. One method represents van
der Waals forces directly as the interaction force between the drops. The other method accounts for the
van der Waals forces via a disjoining pressure in the film between the drops.

In the first method, the interaction potential between the two drops due to van der Waals forces is com-
puted first. Then the body force acting on the drop is the negative gradient of the van der Waals potential.
The body force, which is attractive since the two drops are of the same material (32, Chapter 12), is then
introduced into the momentum equation. Since the flow in the whole domain is computed simultaneously,
the body force exerts its influence on the thinning and rupture of the film between the drops via the
interface.

Numerically the van der Waals forces fv are calculated as follows. The potential energy between the two
drops is calculated via a microscopic Hamaker procedure [23, 33]. The interactions with gas molecules are
neglected.

The potential energy of a molecule located in the cylindrical cell (m, n) in the simulated drop i due to a
molecule in the cell (s, t) in the mirror drop j is

−λij/L6, (7)

where λij is the dimensionless London constant, which is related to the London constant λ̄ij as λij =
λ̄ij/ρdR11G2, and L is the distance between the two molecules, as shown in Fig. 3. For small grid spacings,
the two molecules are approximately at the centers of the two cells whose coordinates are (rm, zm) and
(rs, zs). L then becomes

L =
√

H2 + (r2
m + r2

s − 2rmrs cos θ), (8)

where H = zn − zt is the vertical distance between the two molecules, and θ is shown in Fig. 3.
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Fig. 3 A molecule in cell
(m, n) in the simulated
drop i interacts with a
molecule in cell (s, t) in
the mirror drop j
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The potential energy of a molecule in cell (m, n) due to all the molecules in cell (s, t) is obtained by
multiplying Eq. 7 by the volume fraction in (s, t), Fst, and the number of molecules per unit volume in drop
j, Nj, and integrating over the cell volume,

dφmn =
∫

cell(s,t)
− λij

L6
NjFst rdr dθ dz, (9)

where Nj is related to its dimensional form N̄j as Nj = R3N̄j. Eq. 9 is approximated as

dφmn � −λijNjrs�r�zFst
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0

1
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dθ (10)

for small grid spacings in the r and z directions, �r and �z, respectively. The integral
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dφmn = −2πλijNjrs�r�zFst

{
(H2 + r2

s + r2
m)2 + 2r2

s r2
m

[(H2 + r2
s + r2

m)2 − (2rsrm)2]5/2

}
. (12)

The potential energy per unit volume in cell (m, n) due to the entire drop j is computed by summing
over all cells in drop j,
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where Ni is the number of molecules per unit volume in drop i, which is related to its dimensional form N̄i

as Ni = R3N̄i. Note that the Hamaker constant, Ā = π2N̄iN̄jλ̄ij.
The force per unit volume at (m, n) is

fv = −Fmn∇φmn, (14)

where φ is computed from Eq. 13 and central differencing is used to evaluate Eq. 14. This force is weighted
by the volume fraction, Fmn, to ensure that the force is applied only inside the drop.

In the second method, the effect of van der Waals forces is incorporated as a disjoining pressure in the
film between the drops. According to Deryagin (24), the disjoining pressure can be introduced into the
equation of motion. For a plane-parallel film with thickness h, the disjoining pressure is given by [20, 23, 33]


(h) = − A
6πh3 . (15)
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The gap between the two drops is not uniform, especially when the distance between the drops is large,
but we assume that the van der Waals forces are negligible when the drops are far away. When the drops
are close enough for the van der Waals forces to be important, we assume that the slope of the interface is
small. It is then appropriate to use Eq. 15 to approximate the disjoining pressure in the film. The validity
of these assumptions will be examined in Sect. 5.3.

The van der Waals force reads

fv = −∇
(

A
6πh3

)
. (16)

Since the disjoining pressure depends only on the thickness of the film only,

∂

∂z

(
A

6πh3

)
= 0. (17)

The van der Waals force is then

fv = − ∂

∂r

(
A

6πh3

)
r̂, (18)

which is evaluated using second-order central differencing. In the computation, the film thickness h is
defined only inside the film between the drops. It is calculated as the average height of the liquid in a cell
column.

4 Validation

In this section the two methods to calculate van der Waals forces are validated. Then the effect of grid
resolution on coalescence time is studied. We have also studied the effect of domain size. The results show
that the computational domain used is sufficient to capture the collision dynamics for the parameters used.
The details are not presented here.

4.1 Validation of the potential method

The interaction potential and force between two spheres separated by a distance H are known (33). The
potential � for two equal-sized drops is

� = − A
12

[
1

x2 + 2x
+ 1

x2 + 2x + 1
+ 2 log

x2 + 2x
x2 + 2x + 1

]
, (19)

and the interaction force F is

F = −A(x + 1)

12

[
1

(x2 + 2x)2 + 1
(x2 + 2x + 1)2 − 2

x2 + 2x
+ 2

x2 + 2x + 1

]
, (20)

where x = H/2.
Consider the two spheres in Fig. 1 which are separated by a distance H = 2R. The interaction potential

and force in each grid cell are computed numerically and the totals are obtained by summing the values in
all the cells. The results are compared with the exact values obtained from Eqs. 19 to 20. The relative error
is summarized in Table 1. It can be seen that the error is very small and has a convergence rate of about 2.

4.2 Validation of the disjoining pressure method

To verify the disjoining pressure method for calculating van der Waals forces, we simulate the van-der-Wa-
als-driven axisymmetric point rupture of a free film and compare with previous results [16, 17]. Ida and
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Table 1 Relative error in the computation of interaction potential and force between two equal-sized drops separated by a
distance of 2R

Number of grid cells Error in potential (%) Rate Error in force (%) Rate

50 × 100 6.94 × 10−2 7.30 × 10−2

71 × 142 3.41 × 10−2 2.03 4.30 × 10−2 1.51
100 × 200 1.72 × 10−2 2.00 2.31 × 10−2 1.81
142 × 284 8.14 × 10−3 2.13 1.02 × 10−2 2.33
200 × 400 4.29 × 10−3 1.87 4.68 × 10−3 2.27

Miksis (16) studied the line rupture of a two-dimensional free film using a long-wavelength model, as did
Vaynblat et al. (17). Vaynblat et al. also examined point rupture and found similar behavior to that of line
rupture. Vaynblat et al. have confirmed numerically that for both line and point rupture, near the rupture
time tc and the rupture point rc, the solutions to the long-wavelength lubrication equations (17) describing
rupture have similarity forms

h(r, t) = ταH(η), (21)

u(r, t) = τγ U(η), (22)

where τ = t − tc, η = (r− rc)/τ
β , h is the film thickness, and the constants α, β, and γ are scaling exponents.

Dimensional analysis based on the continuity equation gives

γ − β = −1. (23)

The two studies disagree about the dynamic balance between different terms, and thus the scaling exponents
values. Ida and Miksis suggested a balance between van der Waals forces and viscosity while neglecting
inertia and surface tension, leading to α = 1/3 while β and γ were undetermined by scaling. The values of
β inferred from their numerical simulations are 0.39 ∼ 0.46 (17). In contrast, Vaynblat et al. argued that
the balance is between van der Waals forces, viscosity and inertia while surface tension neglected. This
scaling results in the determination of all the three scaling exponents

α = 1/3, β = 1/2, γ = −1/2. (24)

Using a highly adaptive mesh, Vaynblat et al. solved the lubrication equations numerically and were able
to resolve the dynamics until a time very close to rupture when the film thickness is of order 10−10 as
opposed to 10−3 in (16). The values for the scaling exponents in Eq. 24 were verified.

We adopt the problem studied in both (16) and (17), but solve the full Navier–Stokes equations in an
axisymmetric coordinate system. It is difficult to implement the potential method to compute the van der
Waals forces because the film extent is infinite and the coordinate system is axisymmetric. Therefore, only
the disjoining pressure method is used.

The characteristic scales are: length h0, velocity µ/ρh0, time ρh2
0/µ, and pressure µ2/ρh0

2, where h0 is
the mean thickness of the film, ρ is the density of the film, and µ is the viscosity of the film. To compare
with the results in (17), the dimensionless parameter values in our scaling are

Re = 1, We = π2/3, and A = 6πε2, (25)

where ε is the ratio of the mean thickness of the film to the radial extent of the domain. The effect of
varying the parameter ε will be considered. Since the film in (17) is in a vacuum, a small value is chosen for
the density and viscosity ratios: ρ̂ = µ̂ = 0.01. Additional simulations showed that this value is sufficiently
small to have no effect on the results.

To take advantage of symmetry, only a quarter of the film profile is used as the computation domain which
is taken to be [0, 1/ε] × [0, 1]. The symmetry volume-fraction boundary condition is used on the symmetry
plane. The initial film profile is the same as in (17). The half film thickness is 0.5h(r, 0) = 0.5 − 0.1 cos(επr).
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The calculation in (17) is one dimensional, so only the velocity in the r direction is defined and initially is
u = 0.1ε sin(επr). In our simulation, this initial condition for u is used in the film. The initial u in the gas
is obtained from mass conservation. The initial v velocity in the film and in the gas are derived from the
continuity equation. Since the similarity solution is independent of the initial conditions, we should obtain
the same similarity solution even though we use a slightly different initial condition. Other forms of initial
conditions have also been tested; the results show that while different initial conditions affect the rupture
time, they have little effect on the similarity solution.

As a representative example, Fig. 4 shows the time evolution of the film for ε = 1/4. The scaling expo-
nents can be estimated from log-log plots of appropriate variables as in (17). The slope of −∂h/∂t(0, t)
versus the minimum film thickness h(0, t) on a log-log scale is (α − 1)/α. Similarly ∂2h/∂r2(0, t) gives
(α − 2β)/α, and ∂u/∂r(0, t) gives (γ − β)/α. Figure 5 shows the log–log plots of the above variables as
functions of h(0, t) for ε = 1/4. All variables approach linear behavior in the late stages of the thinning of
the film, which implies the existence of the similarity solution.

A systematic study has been conducted for different values of ε and different grid resolutions. In (16)
and (17), ε � 1 is the basic assumption for the lubrication model. However, since the full Navier–Stokes
equations are solved in our simulation, computational cost prevents us from using very small ε as well as
very fine grids which are important for resolving the thin film near rupture. Despite of these limitations, by
varying ε and the resolution we can show that our results approach those in (16) as ε decreases or as the
resolution is refined.

The computed slopes and the exponents estimated from these slopes are summarized in Tables 2 and 3.
The results of previous studies (16,17) are also listed. The slopes of −∂h/∂t and ∂u/∂r have a reasonable
agreement with the theoretical values. Therefore, the constant α and the relationship in Eq. 23 are repro-
duced. The slope of −∂h/∂t deviates from its theoretical value with decrease of ε, whereas it converges
with increase of resolution. This implies that for small ε a finer grid is needed.

Although the slope of ∂2h/∂r2 converges as ε decreases and as the resolution is refined, the current
values differ from the theoretical ones, but are consistent with the work of Ida and Miksis (16). The main
reason for this discrepancy is resolution. As discussed by Vaynblat et al. (17), when surface tension is
small compared with viscosity, as in the current case, a transition region, in which inertial effects are sub-
dominant, exists before van der Waals forces, viscosity and inertia all balance. Vaynblat et al. also pointed
out that the values of β estimated from the results of Ida and Miksis did not fall into the range required
by their scaling. Furthermore, Vaynblat et al. were able to resolve the film up to 10−10 compared to 10−3
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Table 2 Computed slopes and estimated exponents as a function of ε �r = �z = 0.02

Slopes Exponents

ε −∂h/∂t ∂u/∂r ∂2h/∂r2 α γ − β β

(α − 1)/α (γ − β)/α (α − 2β)/α

1/3 −1.9986 −3.1092 −1.2233 0.3335 −1.0369 0.3707
1/4 −2.0183 −3.1080 −1.2660 0.3313 −1.0297 0.3754
1/5 −2.0312 −3.1066 −1.2941 0.3299 −1.0249 0.3784
Ida and Miksis (16) 0.3359 −1.0143 0.3904
Vaynblat et al. (17) −1.9999 −2.9999 −2.000 0.3333 −1.0000 0.5000
Theory (17) −2 −3 −2 1/3 −1 1/2

Table 3 Computed slopes and estimated exponents as a function of grid resolution ε = 1/5

Slopes Exponents

�r = �z −∂h/∂t ∂u/∂r ∂2h/∂r2 α γ − β β

(α − 1)/α (γ − β)/α (γ − 2β)/α

1/30 −2.0812 −3.2149 −1.2558 0.3245 −1.0432 0.3660
1/40 −2.0608 −3.1651 −1.2672 0.3267 −1.0340 0.3703
1/50 −2.0312 −3.1066 −1.2941 0.3299 −1.0249 0.3784
Ida and Miksis (16) 0.3359 −1.0143 0.3904
Vaynblat et al. (17) −1.9999 −2.9999 −2.000 0.3333 −1.0000 0.5000
Theory (17) −2 −3 −2 1/3 −1 1/2

in Ida and Miksis’s study, which enabled Vaynblat et al. to confirm that the balance at the final rupture
stage is between van der Waals forces, viscosity and inertia. Vaynblat et al. also observed that ∂2h/∂r2

took a longer time to approach linear behavior than other variables, which showed the existence of the
transition region. Therefore, Vaynblat et al. concluded that the simulation of Ida and Miksis was still in
the transient region. Due to computational intensity, the smallest film thickness we can resolve is about
10−2. Our calculated value of β is 0.37 ∼ 0.38, which is close to the value of 0.39 in the results of Ida and
Miksis for the specific case considered. Considering the observation of Vaynblat et al., we conclude that
our calculation has not reached the eventual rupture region, hence the values of β and γ observed disagree
with the theoretical values in Eq. 24.

4.3 Effect of grid resolution

It has been shown (20) that the film between two deformable drops can not rupture in finite time in the
absence of van der Waals forces. However, as mentioned in Sect. 2, in the VOF method, coalescence occurs
automatically whenever two interfaces come into adjacent grid cells, whether the van der Waals forces are
present or not. Therefore, it is of interest to investigate the effect of grid resolution on coalescence.

Figure 6 shows the time evolution of the half minimum film thickness hmin/2 for different numbers of
grid cells and for rim rupture and nose rupture. The curves of different resolution overlap at small times,
indicating that all the grids used are adequate to capture the large-scale motion of the drops. However, the
film draining process is quite different. In the absence of the van der Waals forces, as the cell size decreases,
the film ruptures at smaller thickness and thus the rupture time increases. On the contrary, in the presence
of the van der Waals forces, the rupture time decreases with decreasing cell size. This reveals that as the
film is better resolved, the van der Waals forces are better approximated so that their effects are more
obvious. It can also be seen from figure (a) that the thinning rate of the film after a dimple forms increases
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Fig. 6 Half minimum thickness hmin/2 as a function of time for different grid resolution. ∂F/∂z = 0 boundary condition on
the symmetry plane. Re = 1, We = 1, ρ̂ = 0.001, µ̂ = 0.001. Solid lines: van der Waals forces are absent; Dashed lines: van der
Waals forces calculated from potential; Dotted lines: van der Waals forces calculated from disjoining pressure. (a) A = 0.1,
(b) A = 10
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as the grid is refined. Taking Figs. 13–15 together, one can see that this means the size of the dimple is
decreasing. Thus the rupture mode is approaching nose rupture as the resolution increases, which implies
that the Hamaker number used is relatively large. However, it is expected that smaller, more realistic,
Hamaker numbers can be employed while using a very fine grid. The coalescence times for figure (b) in
the presence of van der Waals forces are shown in Fig. 7. The coalescence time is converging with grid
resolution.

5 Results and discussion

In this section the results of drop collision in the absence of the van der Waals forces are presented first.
The significance of the volume fraction boundary condition on the symmetry plane is discussed. Then the
effects of van der Waals forces, Reynolds number, and viscosity ratio are examined.
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Fig. 8 Rebound of the two drops. Van der Waals forces are absent. F = 0 boundary condition on the symmetry plane. Re =
1, We = 1, ρ̂ = 0.001, µ̂ = 0.001, 142 × 284 grid cells
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Fig. 9 (a) Evolution of the film between the two drops. (b) Symmetry plane pressure as a function of time and radial position.
Van der Waals forces are absent. F = 0 boundary condition on the symmetry plane. Re = 1, We = 1, ρ̂ = 0.001, µ̂ = 0.001,
142 × 284 grid cells

5.1 Drop bouncing

In this and the next two sections, ρ̂ and µ̂ are both specified as 0.001. Re = 1, We = 1 are used so that the
effects of inertia, viscosity and surface tension are of equal importance.

As discussed in Sect. 2, unlike the other variables, the volume fraction has selective boundary conditions
on the symmetry plane. Different boundary conditions are used to model different collision behaviors.
Figure 8 shows the rebound of the two drops. Note the computational domain, comprised of 142 × 284
grid cells, encompasses the first quadrant only, but its mirror images are shown for clarity. The straight-line
approximation in each interfacial grid cell is plotted, which is necessary to represent the interface correctly
near the symmetry plane. The zero volume-fraction boundary condition on the symmetry plane is used.
Therefore the drop experiences the boundary as a slip wall, and cannot merge with its image. It is well
known [19, 20] that as two drops approach each other the pressure between them builds up, leading to
the formation of a dimple, as shown in the t = 0.38 frame. Due to the large pressure build up, the drops
rebound even though the applied hyperbolic flow continues to force them toward each other.

Figure 9(a) provides detailed shapes of the film between the drops. Unlike the coalescence case, the
dimpled film does not rupture, but flattens as the drops deforms. As the drops rebound, the film resumes
its dimpled shape until the drops are almost round. Figure 9(b) shows the pressure at the symmetry plane
as a function of time and radial position.
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Fig. 10 Coalescence of two drops. Van der Waals forces are absent. ∂F/∂z = 0 boundary condition on the symmetry plane.
Re = 1, We = 1, ρ̂ = 0.001, µ̂ = 0.001, 142 × 284 grid cells

5.2 Drop coalescence

Figure 10 provides a general picture of the coalescence collision. In this case, the symmetry boundary
condition is used. As a result, the drop and its image merge automatically. A dimple forms at t = 0.38. At
t = 0.44, coalescence occurs at the rim of the dimple, resulting in high curvature at the contact point and
subsequently a large surface tension force there. The contact area is then increased by surface tension,
leaving a bubble trapped in the center. After the post-collision drop has reached its maximum deformation
at t = 0.80, it and the entrapped bubble relax to a rounder shape.

In Fig. 10 the gross motion of the two drops is captured, but some of the details are not physical due
to the limitation of axisymmetry. For instance, experimentally it is seen that azimuthal instabilities lead
to coalescence at a point (34), not along the entire ring that surrounds the dimple. However, azimuthal
variations are not allowed in this simulation. This limitation also allows the formation of toroidal bubbles
in the simulation, which is certainly non-physical.

Details of the evolution of the film between the drops before coalescence are shown in Fig. 11(a).
This figure shows the half thickness of the film between the drops, h/2, as a function of time and radial
position. The interface translates downward with little deformation until t = 0.30 when the interface near
the symmetry axis flattens. After that a dimple forms and grows rapidly, the minimum thickness of the film
decreases, and the film ruptures at the rim of the dimple at t = 0.44.

Figure 11(b) shows the pressure at the symmetry plane as a function of time and radial position. It is
quite similar to Fig. 9(b) for the bouncing case. It illustrates the pressure evolution in the film between
the drops. From t = 0.28 to t = 0.30, there is a dramatic increase in pressure at the symmetry axis. The
pressure peak then moves radially outward with the dimple. The thinning rate at the symmetry axis slows
down under such a sudden increase of pressure, as shown in Fig. 12. The film at the symmetry axis thins
quickly until a transition point at about t = 0.30 and then thins slowly until just before the time of rupture.
The curves of half film thickness at the symmetry axis hc/2 and half minimum thickness hmin/2 deviate at
around the same time, indicating the formation of the dimple.

As shown by the above results, by manipulating the volume fraction boundary condition on the symmetry
plane, we can simulate both coalescence and bouncing. However, the current model can not predict whether
these two drops should merge or bounce. This will be the subject of future work.

5.3 Effect of the van der Waals forces

When the film between the drops is sufficiently thin, van der Waals forces become significant and destabilize
the film. In this section we focus on the effects van der Waals forces have on the rupture of the film. For
this reason, the symmetry volume fraction boundary condition is used on the symmetry plane and van der
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Fig. 11 (a) Evolution of the film between the two drops. (b) Symmetry plane pressure as a function of time and radial
position. Van der Waals forces are absent. ∂F/∂z = 0 boundary condition on the symmetry plane. Re = 1, We = 1, ρ̂ = 0.001,
µ̂ = 0.001, 142 × 284 grid cells

Fig. 12 Half film
thickness at the symmetry
line hc/2 and half
minimum thickness
hmin/2 as a function of
time. Van der Waals
forces are absent.
∂F/∂z = 0 boundary
condition on the
symmetry plane. Re = 1,
We = 1, ρ̂ = 0.001,
µ̂ = 0.001, 142 × 284 grid
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Waals forces are turned off once coalescence occurs. The dimensionless Hamaker number, A, is varied to
adjust the strength of van der Waals forces. Four different values, which correspond to increasing strength
of van der Waals forces, are used: A = 0.01, A = 0.1, A = 1, and A = 10.

5.3.1 Van der Waals forces calculated from potential

Figure 13 shows the evolution of the film between the drops for four values of A. Two modes of rupture
are observed for different values of A: ‘rim rupture’ (20) where the film ruptures at the rim of the dimple,
as in Fig. 13(a–c); and ‘nose rupture’ (20) where the film ruptures at the symmetry axis, as in Fig. 13(d).
These two modes of rupture were also observed and discussed by Yiantsios and Davis (20) and Rother
et al. (35). At relatively small A, for example A = 0.01, a dimple is formed and grows. However, the size
of the dimple is smaller than the dimple in Fig. 11(a) in which A = 0. The size of the dimple continues to
decrease as A increases. At A = 1 only a very small dimple is formed. As A is increased to 10, no dimple is
formed at all. The rupture mode changes from rim rupture to nose rupture. This suggests that under strong
van der Waals forces, the drops approach each other so quickly that there is no time for a dimple to form.

Another fact apparent in Fig. 13 is that the rupture time decreases as the strength of the van der Waals
forces grows. This point is also illustrated in Fig. 14(a) where the half minimum thickness of the film is
shown as a function of time for different values of A. For small time, all the curves collapse with the curve
A = 0, which implies that in this period of time van der Waals forces are weak. Thus the assumption that
the van der Waals forces are negligible at large separation of the drops, which is used when introducing
the disjoining method, is valid. As A increases, the film thins faster, therefore the corresponding curve
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Fig. 13 Evolution of the film between the drops with van der Waals forces calculated from potential. Re = 1, We = 1,
ρ̂ = 0.001, µ̂ = 0.001, 142 × 284 grid cells. (a) A = 0.01, (b) A = 0.1, (c) A = 1, (d) A = 10

deviates from the A = 0 curve sooner. In addition, it can be seen that at small A, the curves with van der
Waals forces deviate around the time when the dimple is formed. This implies that the van der Waals forces
become important at that time. The A = 10 curve deviates sooner, before dimple formation, showing that
van der Waals forces become important earlier. Figure 13 shows that in the cases with a dimple the slope
of the film is small after the dimple forms (this is more apparent if the figure is not plotted in the semi-log
scale). This fact validates the second assumption in the disjoining pressure method.

It is also interesting to note the change of the thinning rate of the film under different values of A.
As mentioned in Sect. 5.2, a transition point which is associated with the formation of the dimple exists,
separating the faster thinning in early time and the slower thinning in later time, as shown on the curve
A = 0. One expects that under stronger van der Waals forces the film will thin faster. At A = 0.01 and
A = 0.1, after the transition point, the film thins at a faster rate than the case of A = 0. At A = 1, the
formation of the small dimple seems to have little effect on the thinning rate since there is no transition
or only a slight transition. The film thins more rapidly with a very small change of thinning rate observed.
When the van der Waals forces are strong, as A = 10, the curve deviates from the A = 0 curve early,
indicating faster approach of the drops. No dimple forms to slow down the thinning of the film, so the
transition point does not exist in this case.

5.3.2 Van der Waals forces calculated from disjoining pressure

Figure 15 shows the evolution of the film between the drops for different values of A. Like in Fig. 13, rim
rupture is observed for A = 0.01, A = 0.1 and A = 1, and nose rupture for A = 10.
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Fig. 14 Half minimum thickness of the film as a function of time for different values of A. Re = 1, We = 1, ρ̂ = 0.001,
µ̂ = 0.001, 142× 284 grid cells. Solid line: van der Waals forces are absent; Dashed lines: van der Waals forces calculated from
potential; Dotted lines: van der Waals forces calculated from disjoining pressure
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Fig. 15 Evolution of the film between the drops with van der Waals forces calculated from disjoining pressure. Re = 1,
We = 1, ρ̂ = 0.001, µ̂ = 0.001, 142 × 284 grid cells. (a) A = 0.01, (b) A = 0.1, (c) A = 1, (d) A = 10
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Figure 14 compares the curves of half minimum film thickness as a function of time obtained by
the two methods and without van der Waals forces. It can be seen from figure (b) that when the sep-
aration between the two drops is large, the films thins faster in the disjoining pressure method. The
difference between the two methods becomes more obvious as A increases. However, figure (a) shows
that at the later stage of the draining process, at small Hamaker numbers, A = 0.01 and A = 0.1,
the film thins faster in the potential method. As A increases, this difference between the thinning rate
at small separation decreases until A = 1. When A becomes 10, the film thins faster in the disjoining
pressure method in the entire draining process. This can be explained by the way the disjoining pres-
sure is computed. The form of the disjoining pressure is derived from the interaction potential between
two semi-infinite liquid regions separated by a film of uniform thickness. The disjoining pressure is the
force one of the regions exerts on a unit area of the other region. In applying this to the interaction of
two drops, the assumption that the regions are semi-infinite is valid as long as the drop extent is rela-
tively large, since the potential decreases as L−6. The assumption that the interface is flat leads to over-
prediction of the van der Waals forces and hence of the thinning rate when the interface is convex. The
disjoining pressure includes the effect of a flat liquid region, but away from the current grid cell the film
thickness is larger if the interface is convex, as it is before the interface flattens. Thus, the disjoining
pressure accounts for the attraction of more nearby liquid than is actually present and over-predicts the
attractive force. As A increases, the van der Waals forces become important at a larger separation, so
the over-prediction of van der Waals forces has a noticeable effect on the thinning of the film earlier,
resulting in more difference from the potential method. On the contrary, when the interface is concave, the
disjoining pressure under-predicts the van der Waals forces. This may be the reason why the thinning rate
is smaller in the disjoining pressure method than that in the potential method for small Hamaker numbers,
because the interface has a concave shape on the two sides of the rim of the dimple, as can be seen from
Figs. 13–15.

5.4 Effect of Reynolds number

Figure 16 compares the temporal evolution of the half minimum film thickness for three Reynolds numbers,
Re = 0.1, Re = 1, and Re = 10. There are remarkable differences in the thinning rate of the film. Before
the drops are in apparent contact, the gas between the two drops is expelled more slowly as Re increases.
To understand the drop motion at the early stage of the collision, the velocity vectors near the drop at
t = 0.1 are shown in Fig. 17. At Re=0.1, the velocity inside the drop is nearly vertical, whereas at Re = 1
and Re = 10 the velocity tilts toward the outer boundary. Under such velocities, the drop deforms more at
higher Re. It can also be seen that the velocity at the lower interface of the drops decreases with increasing
Re, which is consistent with the fact illustrated in Fig. 16 that at small times the lower interface moves more
slowly at higher Re. To better understand the velocity field, we subtract the extensional flow to determine
how the extensional flow is modified by the presence of the drop. Figure 18 displays this part of the the
velocity. In the extensional flow a drop tends to be compressed axially. Thus, the curvature, and hence the
surface tension force, is elevated along the equator of the drop and decreased at the poles. This leads to
the formation of the vortices seen in Fig. 18(a), which tend to restore a spherical drop shape.

As Re increases, the strength of the two vortices decreases and their positions shift. This is due to
the competition between inertial and viscous forces. The clockwise vortex must overcome the downward
inertia of the extensional flow. Thus as Re increases and inertial forces become dominant, the strength and
extent of the clockwise vortex decrease. As a result, the extent of the other vortex increases, although its
strength decreases as Re increases. At Re = 10, the clockwise vortex disappears and the counter-clockwise
vortex occupies the whole domain. Finally, we find that as inertia suppresses the vortices, which in turn
suppress deformation of the drop, deformation increases. The poles of the drops flatten, so the top of the
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Fig. 16 Half minimum
thickness hmin/2 as a
function of time for
different Re. ∂F/∂z = 0
boundary condition on
the symmetry plane.
We = 1, ρ̂ = 0.001,
µ̂ = 0.001, A = 0.1,
71 × 142 grid cells. Van
der Waals forces are
calculated by the
disjoining pressure
method
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Fig. 17 Velocity vectors at t = 0.1 for different Re. ∂F/∂z = 0 boundary condition on the symmetry plane. We = 1, ρ̂ = 0.001,
µ̂ = 0.001, A = 0.1, 71 × 142 grid cells. Van der Waals forces are calculated by the disjoining pressure method. (a) Re=0.1,
(b) Re = 1, (c) Re = 10

drop moves downward faster, and the bottom of the drop moves downward slower as Re increases. Thus
in Fig. 16 we see that when the drops are far apart the thinning rate decreases as Re increases.

Figure 19 displays the evolution of film profiles for different Re. As can be seen, a dimple forms in each
case, although when the dimple forms the thinning rate changes only slightly or not at all for large Re.
After the dimple forms, the film drains more rapidly with increase of Re, according to Fig. 16. While only
a moderate increase of thinning rate is observed when Re is increased from 1 to 10, there is a significant
increase of thinning rate as Re is increased from 0.1 to 1. This is understandable considering that for higher
Re, the effect of drop viscosity is depressed relative to that of drop inertia. Since the viscosity ratio between
the gas and the drop fluid is kept constant, the viscous resistance of the gas flow is relatively decreased.
Therefore, the film is squeezed out more quickly due to higher impact inertia of the drops and lower
resistance force from the gas film.

It should be noted that as shown in Fig. 19, the size of the dimple does not differ significantly between
Re = 0.1 and Re = 1, though the thinning rate after the dimple forms is very different in the two cases. This
is unlike the results in Sect. 5.3 which show that the thinning rate of the film is closely related to the size of
the dimple.
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Fig. 18 Velocity vectors(top) and contours of stream functions(bottom) at t = 0.1 for different Re for the flow field after the
extensional flow is subtracted. The spacing between contours is 0.05. ∂F/∂z = 0 boundary condition on the symmetry plane.
We = 1, ρ̂ = 0.001, µ̂ = 0.001, A = 0.1, 71 × 142 grid cells. Van der Waals forces are calculated by the disjoining pressure
method. (a) Re=0.1, (b) Re = 1, (c) Re = 10

5.5 Effect of viscosity ratio

The influence of the viscosity ratio µ̂ on the thinning rate is shown in Fig. 20. Since other parameters are
fixed, increasing µ̂ means increasing the gas viscosity. Thus the gas in the film exerts higher resistance to
the draining of the film. The increasing difficulty of discharging the film results in slower draining rates. A
great increase in the thinning rate is observed as µ̂ is decreased from 0.1 to 0.01. However, as µ̂ is decreased
further, from 0.01 to 0.001, there is only a small increase in the thinning rate, implying an approach to the
limit in which the ambient viscosity is zero. The higher resistance from the gas at larger µ̂ also leads to the
increase of the dimple size, as shown in Fig. 21 which depicts the evolution of the film shapes for different
µ̂.

The flow fields for µ̂ = 0.01 and µ̂ = 0.1 are very similar to that of µ̂ = 0.001 displayed in Figs. 17(b)
and Fig. 18(b), so they are not shown.
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Fig. 19 Evolution of the film between the drops for different Re. ∂F/∂z = 0 boundary condition on the symmetry plane.
We = 1, ρ̂ = 0.001, µ̂ = 0.001, A = 0.1, 71 × 142 grid cells. Van der Waals forces are calculated by the disjoining pressure
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Fig. 20 Half minimum
thickness hmin/2 as a
function of time for
different viscosity ratios.
∂F/∂z = 0 boundary
condition on the
symmetry plane. Re = 1,
We = 1, ρ̂ = 0.001,
A = 0.1, 71 × 142 grid
cells. Van der Waals
forces are calculated by
the disjoining pressure
method

Time

H
al

fm
in

im
u

m
fil

m
th

ic
kn

es
s,

h m
in
/2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10-2

10-1

100
µg/µd=0.001
µg/µd=0.01
µg/µd=0.1

6 Conclusions

In this paper the head-on collision of two equal-sized drops in a hyperbolic flow is studied numerically.
Both coalescence and bouncing collisions are modeled and the effects of the van der Waals forces on
coalescence are investigated. The evolution of the film between the drops is examined.

In our simulations, the two drops interact with each other on the symmetry plane through the volume-
fraction boundary condition which consequently affects the collision behavior dramatically. In the standard
VOF method, coalescence happens automatically whenever two interfaces come within one grid cell of one
other. Our simulations have shown that manipulation of the volume-fraction boundary condition can be
used to numerically control coalescence. A symmetry condition leads to coalescence while a zero condition
leads to bouncing. In future work we will develop a physical model to properly control the boundary
condition.

Two methods have been developed to calculate van der Waals forces. One method incorporates the van
der Waals forces in terms of the interaction potential between the two drops. The second method calculates
the van der Waals forces from the disjoining pressure in the film between the drops. Results show that
the disjoining pressure method over-predicts the van der Waals forces when the interface is convex and
under-predicts when the interface is concave. The value of A for transition from rim to nose rupture lies in
the same range in the two methods. The disjoining pressure method is much less computationally intensive,
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Fig. 21 Evolution of the film between the drops for different viscosity ratio. ∂F/∂z = 0 boundary condition on the symmetry
plane. We = 1, Re = 1, ρ̂ = 0.001, A = 0.1, 71 × 142 grid cells. Van der Waals forces are calculated by the disjoining pressure
method. (a) µ̂ = 0.001, (b) µ̂ = 0.01, (c) µ̂ = 0.1

but relies on the assumption that the interface slope is small. These results show that disjoining pressure
method captures the main features of the evolution, but will not provide adequate accuracy under all
conditions.

Study of the effect of grid resolution on coalescence shows that in the absence of the van der Waals
forces, increase of grid resolution results in increase of coalescence time. In addition, for constant Hamaker
number, the effect of van der Waals forces are more apparent with increasing grid resolution.

The influence of Reynolds number and viscosity ratio is also examined. Higher Reynolds number
results in larger deformation. Furthermore, the film drainage after apparent contact of the drops is faster
for higher Reynolds numbers. The drainage rate differs dramatically between Re < 1 and Re > 1. In regards
to viscosity ratio, larger viscosity ratio leads to slower film drainage.

The suspending fluid is gas whose mean free path of the molecules is about 0.1 µm. The thickness
of the gas film between the two drops may become comparable to or smaller than this value. If this
happens, the continuum assumption breaks down and the non-continuum effects may become impor-
tant (36). Furthermore, when the pressure difference across the film driving the film drainage becomes
comparable to the ambient pressure, the gas flow in the film will be compressed to such a extent that
density change has to be considered (36). However, the non-continuum effects and compressibility are not
considered here.

The van der Waals forces take effect over a length scale that is much smaller than the drop radius and
result in rapid changes. Therefore, in the near contact area where the length scale is small and changes
are fast, a fine grid is a necessity. Whereas away from this region, changes are not that pronounced, so a
coarser grid is acceptable. In future work an adaptive mesh will be implemented in the current model so
that the thin film between the two drops can be better resolved.

Additionally, in the future more extensive parameter studies and three-dimensional simulations will be
performed.
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